

Sun Tracking with Parallel Robots

Ashitava Ghosal Professor Department of Mechanical Engineering & Centre for Product Design and Manufacturing Indian Institute of Science, Bangalore

November 20, 2019 METU, Anakara

Robotics & Design Lab @IISc

Acknowledgements

Ashith Shyam R B

Mohit Acharya

Nils Bjorkman

Sudipta Pramanik

- several other students
- Funding by SERIIUS & Tata Trust

Contents

- Introduction
- Sun tracking Az-El and T-A configurations
- Sun tracking using redundant parallel robot
 - \rightarrow 3-RPS parallel robot
 - \rightarrow 3-UPU parallel robot
- Conclusion

Introduction

Solar Energy Harvesting

Flat photovoltaic panels

- ~18 20% efficiency
- Storage required
- Competitive with coal
- Kurnool, India 1GW

Source: Google images/Wikipedia

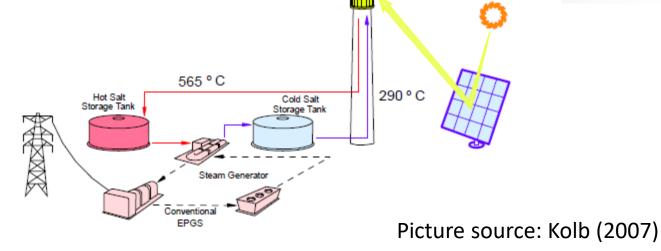
Parabolic trough

- Rotation about one axis
- Incident energy focused on to a tube at focus ~20 % efficiency

Dish concentrator

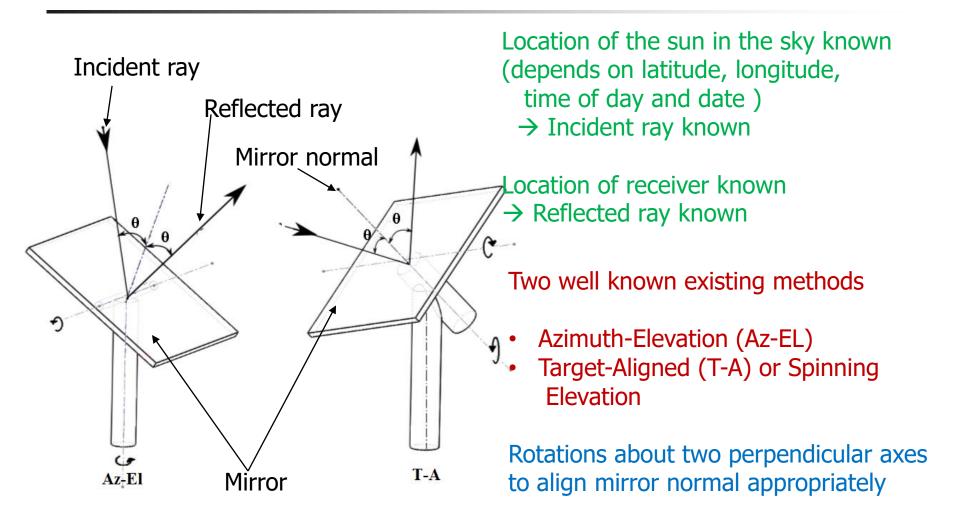
- Parabolic dish
- Incident energy concentrated on to a Stirling engine
- Complete assembly tracks the sun 2 axis motion
- Efficiency larger than PV/Parabolic trough >30%

Concentrated Solar Power Tower

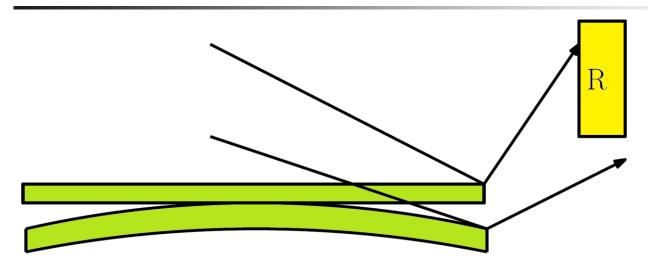


Spain, USA, Australia, Middle East, North Africa, India, China etc.

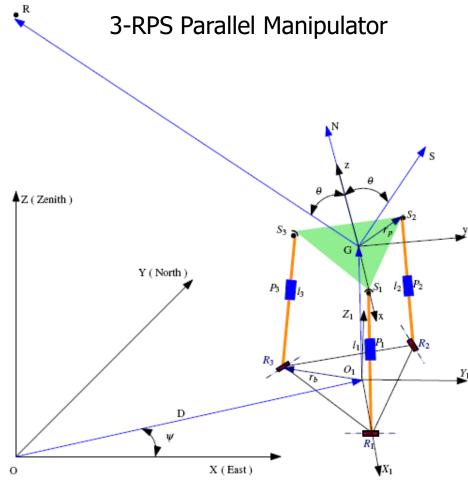
- Concentrated solar power
 - \rightarrow large number (> 5000) of mirrors/heliostats
 - \rightarrow track sun and focus energy at a distant receiver (~500 m to ~1 km)
 - -- high temperature at receiver \rightarrow higher efficiency ~30%
 - -- store solar energy as heat \rightarrow no need for batteries
 - \rightarrow Very slow motion of the sun \sim 180 degrees in 12 hours; 2 axis motion
 - \rightarrow High accuracy requirement \sim 5 mrad pointing accuracy


Solar Power Tower Technology

- Heliostat cost ~50 % of total investment cost (Kolb, 2009) – Target 80\$ /m²
- Solar Power Tower technology shows high potential for technology improvements (Lovegrove, 2012)



Existing Heliostats


Limitations of Existing Heliostats

- Deflection may exceed slope error budget of 2-3 mrad due to wind loading and/or self-weight
- \rightarrow Operational wind loading up to 10 m/sec, Survival wind loading 22 m/s
- Need large amount of backing/support material for avoiding deflection
- Need accurate and expensive speed reducers to achieve ~15 degrees per hour
- L.L. Vant-Hull, Chp.8 Central tower concentrating solar power (CSP) systems

Parallel mechanism for Sun Tracking

- Many advantages as a parallel manipulator
 - \rightarrow More load carrying capacity
 - -- can carry larger mirrors
 - -- less deflection and hence less use of structural supporting material
 - \rightarrow More accuracy
 - Can use linear actuators no need for expensive speed reducers
 - One extra actuator → redundant
 3 principal motion rot(X),rot(Y)
 and tran(Z)

Keep Z_c constant

Ashith Shyam R B

3-RPS Manipulator (Contd.)

Kinematics of 3-RPS

- Given location of sun in the sky, obtain
 - a) Orientation of plane of top platform (mirror)
 - b) Translations of prismatic joints to achieve the orientation

Algorithm

- 1) Choose z_c arbitrarily 2) From laws of reflection $\overrightarrow{GN} = \frac{\overrightarrow{GS} + \overrightarrow{GR}}{||\overrightarrow{GS} + \overrightarrow{GR}||}$
- 3) Orientation of top platform with respect to bottom plate [*n o a*] with

$$n_1^2 + n_2^2 + n_3^2 = 1 \tag{1}$$

$$o_1^2 + o_2^2 + o_3^2 = 1 \tag{2}$$

$$n_1a_1 + n_2a_2 + n_3a_3 = 0 \tag{3}$$

 $n_1 o_1 + n_2 o_2 + n_3 o_3 = 0 \tag{4}$

$$o_1 a_1 + o_2 a_2 + o_3 a_3 = 0 \tag{5}$$

3-RPS Manipulator (Contd.)

Algorithm (Contd.)

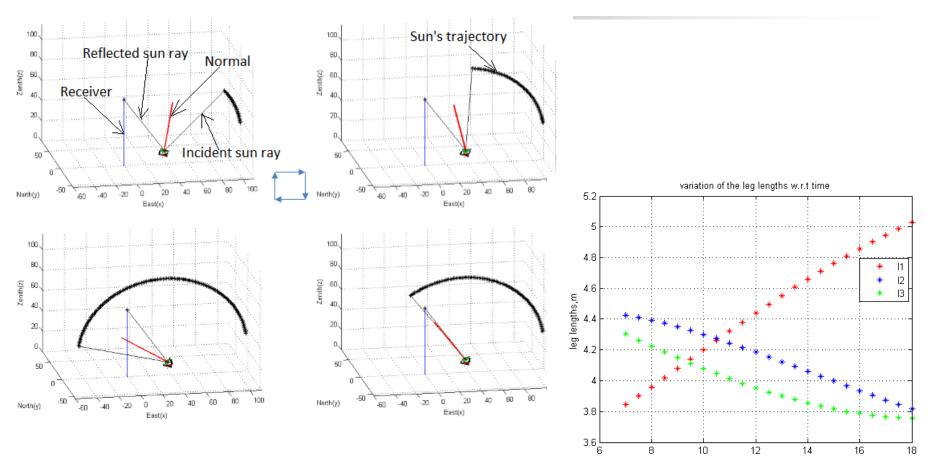
4) 3-RPS configurations introduces 3 additional constraint

$$y_{c} + n_{2}r_{p} = 0$$
(6)
$$n_{2} = o_{1}$$
(7)
$$x_{c} = \frac{r_{p}}{2}(n_{1} - o_{2})$$
(8)

where r_p is the distance from G to S_i

5) 8 equations in 8 unknowns – Use Bezout's elimination to arrive at two equations in two unknowns – x_c and y_c

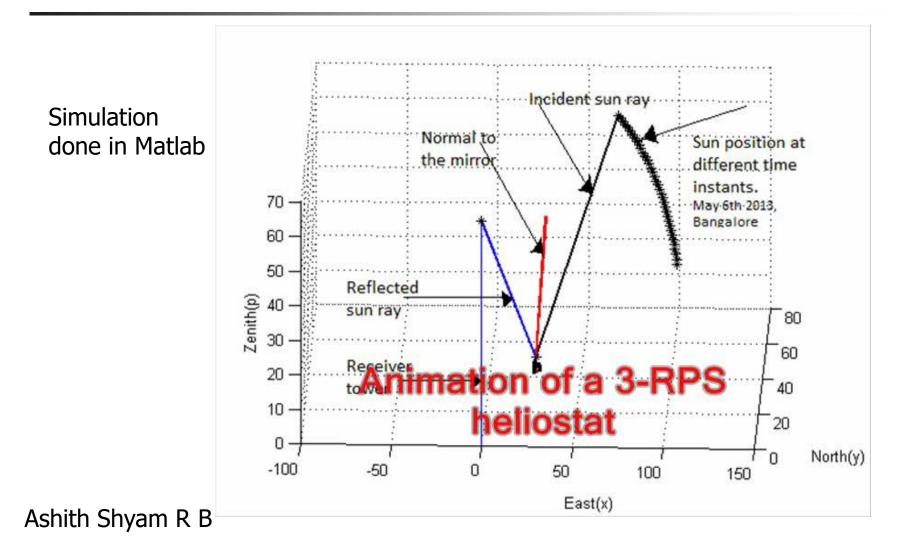
- 6) Solve numerically for x_c and y_c
- 7) Obtain [*n o a*] (rotation matrix) from x_c and y_c


8) From rotation matrix obtain location of S_1 , S_2 and S_3 with respect to bottom platform

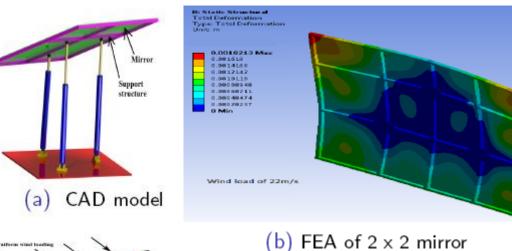
9) Obtain leg lengths as $l_i = ||\overrightarrow{O_1R_i} - \overrightarrow{O_1S_i}||$

CIME Ashith Shyam R B

3-RPS Manipulator – Simulation results


Simulation results for Bangalore, India May 6, 2013

CJME -- Ashith Shyam R B


Time, hrs

3-RPS Manipulator – Simulation results

FEA Analysis

- CAD Model in SolidWorks
- FEA in ANSYS Work bench

Loading – Self-weight (10 kg/m²) + Wind load of 22 m/s

Uniform wind load, $P = \frac{1}{2}C_d\rho v^2 FoS_d$ Factor of safety (FoS) = 2.

Worst case analysis

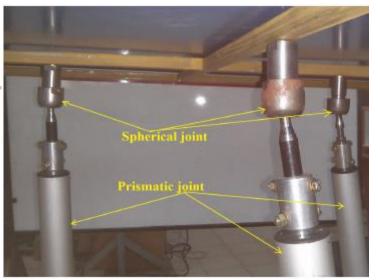
	Wind	Frame(m x m)	Az-El			3-RPS		
	Speed (v) (m/s)	·	Max Deformation (mm)	Stress (x 10 ⁷ Pa)	Weight of frame (kg)	Max Deformation (mm)	Stress (x 10 ⁷ Pa)	Weight of frame (kg)
Self weight	10	2 x 2	1.8862	3.6076	20.94	1.93	4.156	15
(b) wind load		3 × 3	2.6489	3.9829	53.53	2.45	2.595	45
(b) wind load		5 × 5	4.7360	2.9694	356.97	4.90	2.889	198
20.00		2 x 2	1.8872	4.6809	41	1.82	5.728	30
	22	3 × 3	2.8740	4.3612	181.17	2.66	5.518	93
		5 × 5	4.7281	2.5648	1332.54	4.92	5.119	535

Support frame weight reduction of 15-60% reduction for 3-RPS heliostat

Ashith Shyam R B - CJME

Sun Tracking – Hardware

Azimuth-Elevation Configuration


Ashith & Mohit

Sun Tracking – Hardware

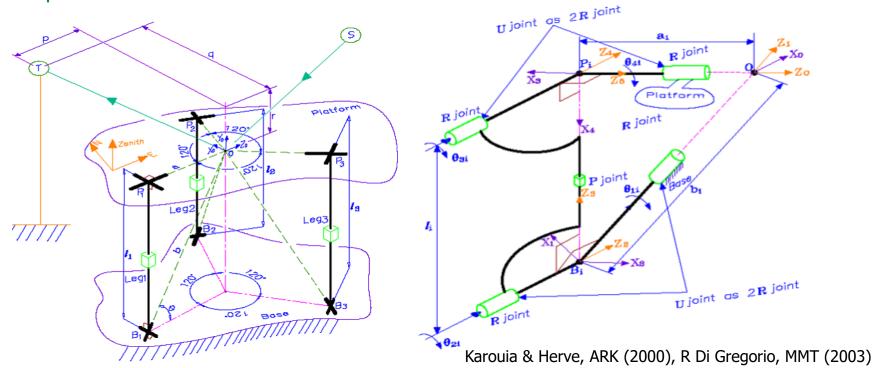
Ashith & Mohit

Experimental Results

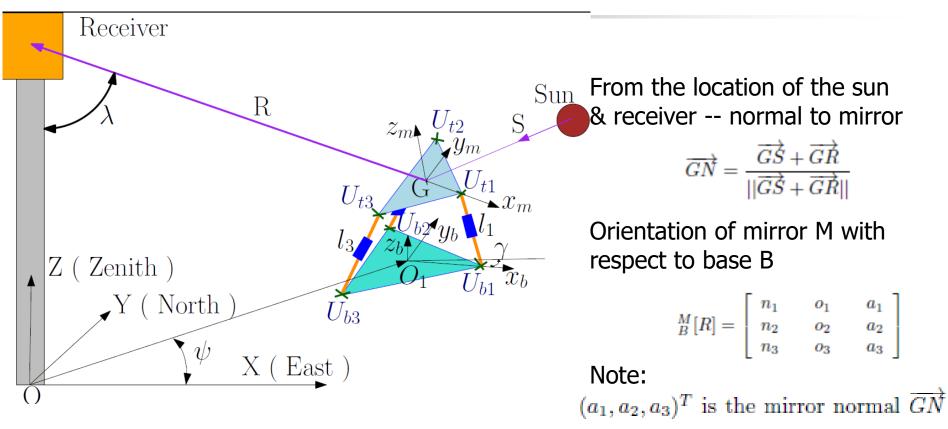
Ashith Shyam R B

Experimental Results (Contd.)

Sun tracking using 3-RPS and Az-El together


- Sun tracking using Azimuth-Elevation & 3-RPS Heliostat
- Pointing errors larger for 3-RPS ~30 mrad vs ~20 mrad
- Main cause manufacturing & initial settings

Ashith Shyam R B *Solar Energy*



Parallel mechanism for Sun Tracking – 3-UPU Manipulator

- Three actuators Prismatic (P) joints & 2 Universal (U) joints in each leg
 → 3 DOF according to Grubler-Kutzbach criterion
- Special axes geometry
 - -- Two intermediate R axis are parallel, first and last R axis intersect at a point -- Stationary centre of rotation
- Spherical ``wrist" has three rotational degrees of freedom

Obtain the other two columns of [R] for Az-El and T-A modes

3-UPU Parallel Manipulator Kinematics (Contd)

Azimuth-Elevation – two consecutive Euler angles a) Rotation about Z by azimuth angle θ_{Az}

a) Rotation about γ_m by angle $(\frac{\pi}{2} - \theta_{El})$ where elevation angle is θ_{El}

Rotation matrix for Az-El configuration

$$R_{Az-El} = \begin{bmatrix} \cos \theta_{Az} \sin \theta_{El} & -\sin \theta_{Az} & \cos \theta_{Az} \cos \theta_{El} \\ \sin \theta_{Az} \sin \theta_{El} & \cos \theta_{Az} & \sin \theta_{Az} \cos \theta_{El} \\ -\cos \theta_{El} & 0 & \sin \theta_{El} \end{bmatrix}$$

angle can be obtained

Since the last column \overrightarrow{GN} is known, azimuth and elevation

3-UPU Parallel Manipulator Kinematics (Contd) Rotation matrix for Target-Aligned (T-A) configuration

Two consecutive Euler angles a) Spin about \overrightarrow{GR} by θ_{sp}

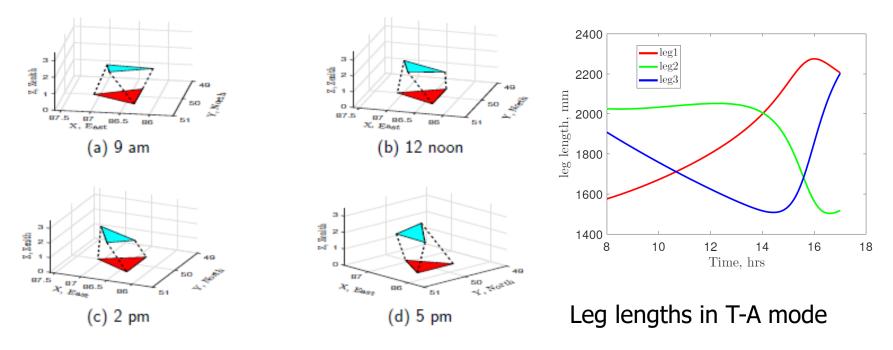
b) Rotate about γ_m by elevation angle θ_{el}

Rotation matrix for Spinning-Elevation (T-A)

Comparing last column \overrightarrow{GN} obtain the two angles

3-UPU Parallel Manipulator Kinematics (Contd) Actuation required to achieve orientation of mirror

Location of U joint in bottom platform $\overrightarrow{O_1U_{b1}} = (r_b, 0, 0)^T$ $\overrightarrow{O_1U_{b2}} = (-\frac{1}{2}r_b, \frac{\sqrt{3}}{2}r_b, 0)^T$ $\overrightarrow{O_1U_{b3}} = (-\frac{1}{2}r_b, -\frac{\sqrt{3}}{2}r_b, 0)^T$ Location of U joint in the top platform $\overrightarrow{GU_{t1}} = (r_p, 0, 0)^T$ $\overrightarrow{GU_{t2}} = (-\frac{1}{2}r_p, \frac{\sqrt{3}}{2}r_p, 0)^T$ $\overrightarrow{GU_{t3}} = (-\frac{1}{2}r_p, -\frac{\sqrt{3}}{2}r_p, 0)^T$

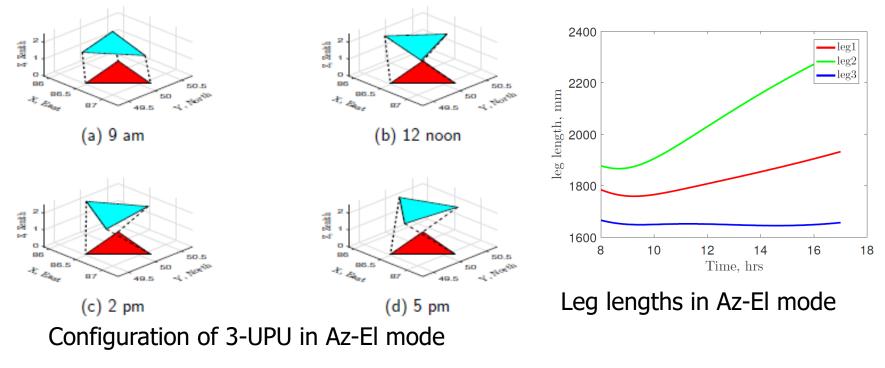

Position vector of top U joint from rotation matrix [R] and translation vector

$$\begin{bmatrix} \overrightarrow{O_1 U_{ti}} \\ 1 \end{bmatrix} = \begin{bmatrix} T \end{bmatrix} \begin{bmatrix} \overrightarrow{GU_{ti}} \\ 1 \end{bmatrix}$$

Obtain leg lengths from $l_i = ||\overrightarrow{O_1 U_{bi}} - \overrightarrow{O_1 U_{ti}}||, \quad i = 1, 2, 3$

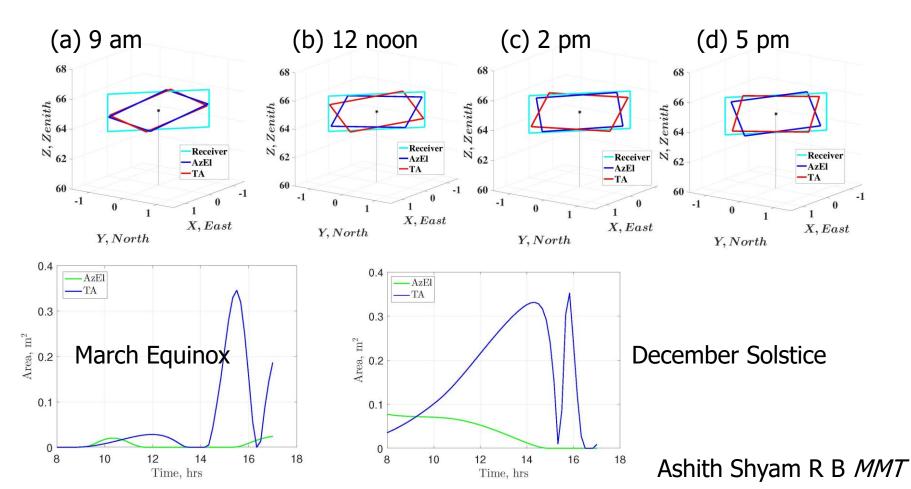
3-UPU Parallel Manipulator Kinematics (Contd)

Actuation required to achieve orientation of mirror March Equinox at Bangalore, India



Configuration of 3-UPU in T-A mode

3-UPU Parallel Manipulator Kinematics (Contd)

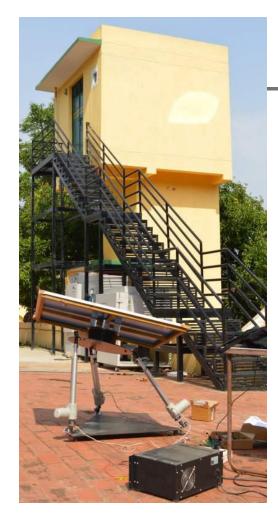

Actuation required to achieve orientation of mirror March Equinox at Bangalore, India



Sun Tracking using Az-EL & T-A

Spillage losses – image of plane mirror on a receiver during March Equinox

Centre of rotation is above the plane of the mirror


Sun Tracking using 3-UPU

- Switched between for Az-El or Target-Aligned configurations
- e-Reconfigurable no change in hardware
- Experiments done at IISc

3-UPU as TA and Az-EL

Bangalore @ roof of ICER

May 24, 2017

Receiver centre at (0, 0 6.72) m

Mirror centre at (-10, 3, 0) m

Az-El 3:18 pm

T-A 3:20 pm

Conclusion

- Novel use of a parallel manipulator for sun tracking
- Kinematics & Design Challenges
- Several advantages
 - \rightarrow More load carrying capacity
 - \rightarrow Use of low-cost linear actuators
 - \rightarrow Potentially more accurate
 - \rightarrow e-Reconfigurable use of redundant actuation in 3-UPU
- Not really more accurate!
 - \rightarrow Too much play at the joints
 - \rightarrow Need better manufacturing

Thank you

More information at Email: <u>asitava@iisc.ac.in</u>

URL: https://mecheng.iisc.ac.in/~asitava